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Recent simulations of Rayleigh—Taylor instability growth rates display consider-
able spread. We provide evidence that differences in numerical dissipation effects
(mass diffusion and viscosity) due to algorithmic differences and differences in sim-
ulation duration are the dominant factors that produce such different results. Within
the simulation size and durations explored here, we provide evidence that the princi-
pal discrepancies are due to numerical dispersion through comparison of simulations
using different algorithms. We present new 3D front tracking simulations that show
tentative agreement with the range of reported experimental values. We begin an
exploration of new physical length scales that may characterize a transition to a new
Rayleigh—Taylor mixing regime. © 2001 Academic Press

1. INTRODUCTION

1.1. Purpose and Scope of the Paper

Accurate numerical simulation of multiphase fluid mixing rates is a long-standing ch:
lenge for computational fluid dynamics. Only recently has the available hardware allow
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significant three-dimensional studies. We consider here one of the most important of
class of problems, Rayleigh—Taylor instability. Rayleigh—Taylor instability results wher
randomly perturbed density contrast interface is subject to continuous acceleration. Ab
characteristic of Rayleigh—Taylor instability is the constant that describes the accelera
of the mixing zone edge.

A wide range of values for this acceleration constant have been reported on the bas
simulation studies, some of which fall outside the limits of experimental error. The purpc
of this paper is to begin a systematic analysis of causes of these discrepancies. To do
we summarize the results of previous Rayleigh—Taylor instability studies, identify potent
sensitive factors in Rayleigh—Taylor simulations, and report new simulation results desig
to quantify the effects of a number of these factors.

There are three main results reported in this paper. The first result shows that front trac
simulations using théronTier code are in tentative agreement with experimental result
Documentation for this code is provided in

http://www.ams.sunysb.edu/~shock/FTdoc.FTmain.html.

To achieve this agreement it is necessary to correct for finite compressibility effects an
compensate for different conventions in the definition of the growth rate.

The second main resultis identifying a possible cause for the spread in simulation res
We compare distinct algorithms, paying special attention to dissipative effects. Over
simulation time and size considered here, we can duplicate the observed spread in sir
tion growth rates through comparison of capturing to tracking algorithms. After restricti
to typical high and low values of the growth rate, there is approximately a factor of 2 to
explained. The low values reported for the growth rate are time dependent, and about
of the factor of 2 difference in simulations occurs during the simulation times reported
this paper. For simulations with identical gridding, simulation time, and other numeric
parameters, we see a 40% decrease in the growth rate computed using capturing algor
(which have artificial dissipation) compared to those obtained RithTier (which com-
pletely eliminates dissipation for interfacial vorticity and for density discontinuities). Thu
essentially all of the discrepancy for the times studied here can be attributed to interfa
dissipative mechanisms in capturing algorithms. Moreover, we can tentatively identify v
cosity rather than mass diffusion as the dominant cause through comparison of two captt
codes, one of which is designed to control mass diffusion while the other is not.

The third main result of this paper is an initial exploration of a possible new physi
regime for Rayleigh—Taylor mixing through identification of a new length scale that
independent of the mixing zone width.

All studies in this paper need to be taken to later time. It is known that the discrep:
cies increase strongly with time. Moreover, the uncertainties associated with data ana
decrease with time, because this analysis is based on the assumption that the flow is
self-similar (late time) regime.

1.2. Background Discussion of Rayleigh—Taylor Instability

An interface between fluids of different densities is unstable when subjected to an ac
eration directed from the heavy fluid to the light fluid [35, 41, 44]. This instability, know
as Rayleigh—Taylor instability, has been a challenge to computational fluid dynamics si
the early days of computers [4]. The instability has a fingering nature, with bubbles of lig
fluid rising into the ambient heavy fluid and spikes of heavy fluid falling into the light fluic
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With p; < po representing the light and heavy fluid densities, and the Atwood numb
A = (p2 — p1)/(p2 + p1) & buoyancy renormalization to gravity the outer edges of the
mixing zoneZ(t) are observed to obey the large time asymptotic scaling law

Zk(t) = (—D*akAgt?, (N

whereqy is a constant. Here, to be consistent with the conventions of laboratory expe
ments, the acceleration (gravity) is directed along the negatxés, so that bubbles “fall”
downward, spikes rise, argh < 0.

Rayleigh—Taylor instability arises in a variety of applications, ranging from incompres
ible regimes such as wind shears in thunder shower systems to highly compressible flow
occur in inertial confinement fusion and in supernovas. For this reason, the use of two fl
Euler equations to model the fluid flow is appropriate. Laboratory experiments are ne:
incompressible. There are four principal numerical difficulties:

1. The sharp interface between the distinct fluids is difficult to maintain for most Euleri:
algorithms.

2. The geometric complexity of the late time unstable interface between the fluids i
source of difficulty for most Lagrangian algorithms.

3. The requirement for a fully compressible code which can be validated on nea
incompressible experiments imposes a strain on computational resources and algorith

4. The spatial complexity and late time simulations required to observe a well-develoy
self-similar flow regime pose a challenge in terms of simulation resources and algorithr
efficiency.

1.3. Summary of Rayleigh—Taylor Results

The bubble acceleration constant= «; provides the most basic characterization of
the mixing zone. However, as Table I illustrates, simulations show considerable sprea

TABLE |
Determination of a, by Experiment, Theory, and Simulation

Theory: Bubble Merger Models

Sharp/Wheeler [42], Sharp [41] 196k, ~ 0.01-0.025 3D
Glimm/Sharp [21], Zhang [51] 1990« ~ 0.06 2D
Alon et al.[1] 1994 o, ~ 0.05 2D
Glimm/Sharp [22] 1997 «, ~ 0.045 2D
Chenget al.[7] 1999 o, ~ 0.06 3D
Experiments
Read/Youngs [36, 48] 1984q;, ~ 0.58-0.65 2D
ap ~ 0.063-0.077 3D
Kucherenkeet al.[29] 1991 @, ~ 0.07 3D
Snider/Andrews [43] 1994 o, ~ 0.07£ 0.007 3D
Schneideet al.[39] 1998 «p, > 0.054 3D
Dimonte/Schneider [11] 1999, ~ 0.05+£ 001 3D
Simulation
Youngs [49] 1991 o, ~ 0.04-0.05 3D
Youngs [50] 1999 o, ~ 0.03 3D
S.-Y. Chen [5] 1999 o, ~ 0.043 3D
Chenget al.[7] 1999 o, ~ 0.08 3D

Glimm et al. (this work) 1999 o, ~ 0.07 3D
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reported values faky,. Results from four independent series of experiments show a spre
(including error bars) of nearly a factor of 2. Somewhat over half of this spread is due
systematic differences among the four series of experiments; the error bars reported for
single experiment account for the remainder. Theoretical results are generally consis
with the experiments. Most of the simulations give growth rates which lie within a factor
2.5 of one another. The spread in simulation values has widened as increased computa
resources have allowed exploration of larger spatial ensembles of random modes, ca
to later times. Plainly, there is a need for an analysis of the simulation results and tt
algorithmic basis which can explain the spread in simulation values. There is also a n
for simulation or other studies of the experiments to explain the spread in experimel
values. The present paper is a beginning of such a study, with a focus on algorithmic iss

1.4. Outline of Paper

In Section 2 we discuss the algorithmic and simulation factors that may influence the s
ulation values ofy,. The dissipative mechanisms of mass diffusion and viscosity (vorticit
diffusion) are known to be important sources of numerical errors for flows with mater
interfaces. To assess and differentiate between the two dissipative mechanisms of mas
vorticity diffusion, we employ an artificial compression algorithm. This algorithm reduce
the number of cells over which the mass diffuses, but it does not limit vorticity diffusion. |
Section 3, we review the front tracking algorithm used in later sections of this paper. T
algorithm is free from interfacial dispersion. Section 4 presents and analyzes new sim
tion studies. The purpose of the simulations and their analysis is to shed light on the rol
potentially sensitive factors discussed in Section 2 and to showtbaTier simulations
do in fact agree with the experiment. Conclusions are stated in Section 5.

2. PRINCIPAL FACTORS AFFECTING SIMULATION RESULTS

2.1. The Numerical Analysis of Mass and Vorticity Diffusion

This paper presents evidence suggesting that numerical dissipation, primarily mass d
sion and viscosity, is the dominant error contributing to the discrepancy between simulati
and experiments. Density contrasts and vorticity are concentrated along the interface,
so this is where capturing schemes concentrate their errors. Numerical dissipation is
acerbated in the Rayleigh—Taylor instability problem by the long time of the simulatio
by the dynamically growing interface length along which the numerical dissipation occu
and by the dominant role that the density contrasts and vorticity concentrations along
interface play in the growth of the mixing zone.

2.1.1. Physical Values of Mass Diffusivity

The influence of diffusion on small amplitude Rayleigh—Taylor exponential growt
rates was analyzed in [13] using an argon-helium mixture with a diffusion coristant
0.64 cn/s. A reduction of the small amplitude exponential growth rate of about 20% w.
observed due to physical diffusivity. For comparison, fluid diffusivities are much smalle
on the order of 10* cn¥/s, and should not influence experimental Rayleigh—Taylor growt
rate values.
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2.1.2. Estimates of Numerical Diffusivity

Numerical diffusion and dispersion are known to be serious issues for Eulerian fin
difference algorithms. In the case of Rayleigh—Taylor instability, where the instability
driven by density contrasts, these effects can be expected to be significant. Some insighi
these effects can be gained by an investigation of the modified partial differential equati
[23, 28, 31, 37, 47] for finite difference schemes for solving the linear advection equatic

Ut + vuy = 0. 2)

This equation can be regarded as a model of the contact discontinuity mode for gas dynar
For simplicity we assume > 0 and consider schemes using flux limiting between the Lax:
Wendroff method and upwind differencing. Following the notation of LeVeque [31], the:
schemes are of the form

1o At

upt =y — H(fjnﬂ/z — 1), 3)

where
n 1
fl 1o =vu; +5v(A = V)¢ (Ujr1 —uj), (4)

v = vAt/AX, and the limiterp; is given by

Ui —Uj_1
¢ =¢@©) and 6 = +—1—.
j j j Ujrr — U

Such schemes are second-order accurate progidBd= 1. We also observe that the CFL
condition requires that < 1.

Forthe unlimited cas¢ () = 1, where this scheme reducesto the Lax—Wendroff metho
Richtmyer and Morton [37] state that solutions to the modified partial differential equati

1 1
Ut + vuy = —évAXZ(l — V) Uy — évAxgv(l — V) Uyxxx (5)

are fourth-order solutions to the finite difference scheme (3). More generally, for schen
with smoothg (9), a straightforward but tedious computation yields a modified equation ¢
the form

Up 4 Uy = AXC1(X, t)Uxx + AXZCo(X, DUxxx + AX3C3(X, t)Uxxxxs (6)

where
1
ax,t) = Ev(l -1 -¢()

1
C2(X, 1) = —év(l — )1+ v(Ep (1) —2) - 3¢'(1))

1 uz, — 2uyu
Ca(X, 1) = v(l —v) {Z¢N(1)”TWUXX

X

V412421 - 2v)¢'(D) 1+ 6vd) Sv(d—v)
— ( 8 + x 24 + x 8 ) lJxxxx}

andy =¢(1) — 1.
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For the first-order upwind method, whep€d) = 0, the modified equation has a leading
order diffusion coefficient equal to

1

D= Ev(l — V)AX. ©)
As a model for gas dynamics the CFL condition requires that+ c)At/Ax < 1. Here
c is the sound speed. For the low compressibility flows of concern here, we can estime
typical flow velocity asjv| & 0.1c so thatv is on the order of a tenth or less. Translating
grid units into physical units, with a 1-mm zoning and a time scale of seconds, we fin
numerical diffusion on the order of 150 éfa. One physical interpretation of this quantity
is the viscous diffusion of velocity fluctuations (vorticity) in a fluid with mean velogitgis
measured by the kinematic viscosity. For materials such as air and water, the physical ve
of the viscosity are well known and are available in such handbooks &RfieHandbook
of Chemistry and Physic€omparing the ratios of the numerical to physical viscosities, w
see that the numerical viscosity of air is approximately three orders of magnitude gre
than the physical viscosity while the numerical viscosity of water is approximately fo
orders of magnitude greater than its physical viscosity. Another interpretation is the phys
diffusion of one material into another. Again referring to the CRC Handbook, we see tl
typical values for diffusivities of gases into liquids and various solutes into water are on
order of 10°-10~* cn?/s while the diffusivities of various gases into air are on the orde
of 10~1-1 cn¥/s. Again comparing these coefficients to the numerical diffusivities abov
we see that the numerical diffusion coefficients are approximately six orders of magnit
greater than the physical diffusivity for solutes in water and from two to four orders
magnitude greater for the diffusion of gases into air. Reductiod td its physical value
for any of the above models would require refining the zoning by up to a factor®f 1
in the worst case with a corresponding increase in computational effort6f10for a
refinement factor of 10in d = 1, 2, or 3 space dimensions, a route plainly not feasible fo
any but the simplest of the above cases.

The estimates described in the previous paragraph are in fact overly pessimistic. Sec
order methods, wherg(1) = 1, eliminate the first-order diffusion terms in the finite dif-
ference equations, making the above order of magnitude estimates inappropriate. For
methods, in regions bounded away from spatial extremepint) and for Ax sufficiently
small, the dominant term in Eq. (6) is the linear dispersion term

_%UAXZ(]- — 1)1+ v =3¢ (D) Uxxx- 8)

While these methods are all formally second-order accurate, for finite meshes the lim
will reduce to alocally first-order method in regions of strong flow gradients such as at jur
or at corners. However, near such regions, numerical diffusion will smooth out the st
gradients and hence decrease the influence of the limiter. Itis important to note that the e
of the dispersion term on the discrete solution to the second-order method is qualitati
different from the effect of diffusion on the first-order method. The former leads to tt
dispersion of oscillations without damping their amplitudes, while the latter reduces
amplitude of the oscillations as they diffuse. The diffusion in the numerical solution aris
from the fourth-order terms in (6). It is interesting to note that for a nontrivial limiter thes
diffusion terms are nonlinear.
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For finite Ax, near jumps or corners, the finite difference solution behaves as a first-or
equation with &/ rate of spreading. Once the discrete Lapladiary — 2uj + Uj1 is
O(Ax?), the higher order analysis of the limiters is applicable and the subsequent dispers
scales a$'/3. This scaling is observed in numerical experiments [32], where the width
observed to be approximatei{yt/3)t¥/3. If this subdiffusive dissipation is modeled by a
grid-dependent diffusivity as in Section 2.1.2, then the grid-dependent diffufivityust
also be time dependent and scalé g<°.

2.1.3. Numerical Diffusion Using Artificial Compression

We refer to [32] for a discussion of the flux limited scheme with artificial compressiol
In this scheme, the numerical mass diffusion is limited to about 2.5 cells, according
numerical experiments on the linear advection equation. The nonlinear fluids simulatit
of Section 4.2 show a larger diffusion length of about 6—7 cells.

The scheme has the same conservation form as Eq. (3), with thé;flux defined as

1
fi12= > (vuf +ouly + 0] +ofy + LT+ LTy — [v+rlhyp+ 47400 AU 0) (9)

andAuf,;, = uf,; — uf. Here thevu terms inf generate a first-order central difference
scheme, the's define a total variation diminishing (TVD) [31] anti-diffusion term, and
thelL terms are artificial compression anti-diffusion. The terms proportiormlliprl o are
artificial viscosity terms. The first of these, proportionabta@onverts central differencing
to upwind differencing. The role of is to control theg terms and likewise the terms
regulate thd. terms. Thus, we define

Ve = (911 —df) /Al (10)
)‘?+1/2 = (L?+1 - L?)/Au?ﬂ/z (11)

if Aut,;, #0andyly,, = ], = 0 otherwise.
The definitions

1 At
912 = > (|U| - BU2> AUy, (12)
g = M(9_1/2: 9]112)- (13)
define a TVD scheme if = 0, where
M = signuy min{|uq|, ..., |ur|} (14)

if all uj have the same sign af = 0 otherwise.
L is the artificial compression anti-diffusion. Let

AX
L] =S-max(0,S- M(nL]_y/p. L].15), S- M(LT 10,0l 1 00)).  (16)

1 At
Lly1ye = 5 <|U| ey > [AUT 1o = M(AUTy o, AUTL 5, AUT )] (15)

HereS=signlL',,,and
AU ,|" = Jaul, | '
|A”?71/2|ﬂ + |A“T+1/2|ﬂ

(17)
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Note that bothy[',; , anda],,, are O(Ax) as Ax — 0, so that the term in absolute
values in Eg. (9) has the same signdar sufficiently smallAx. Thus, in the absence of the
artificial compression terms, Eqg. (9) is simply a generalization of Eq. (4) that encompas
both cases of > 0 andv < O for the special choice of the flux limiter

0 6<0,
O0) = dminmod= <0 0<0 <1, (18)
1 1<6.

Forn = 0,L = 0 and the scheme is TVD [31]. Fgr= 2.5 the diffusion width is shown
[32] numerically to be about 2.5 cells wide, independent of the time

2.1.4. Transitions to New Flow Regimes

The sensitivity of multiphase flow to change of flow regime is well known [12]. Thq
regime of a single length scale, for which the large-scale structures are on the orde
the width of the mixing zone, is known as chunk mix. Transitions to other flow regim
are characterized by the introduction of one or more new length scales to describe
probability distribution function (pdf) for the distribution of droplet and bubble sizes c
fluid volume or mass fraction fluctuation length scales.

Additional fluid waves, such as shock waves, can cause shattering of large-scale struc
and a change in flow regimes. They are thus a mechanism for causing a change of
structure. Dissipation, discussed in Section 2.1.2, may cause a change of flow regime.

Continued acceleration leads to velocities growing without limit. In the presence
viscosity or compressibility, vorticity will diffuse off the interface to the interior flow or
will be generated there directly, giving rise to a transition to turbulent flow. Turbulent flov
have anincreased effective viscosity that decreases the observed valydaobulent flow
also drives turbulent effective diffusivity, leading to a further decreasg.iifhis range of
issues has been considered by Youelgs. in a series of papers; see, for example, [10, 33]
Numerical emulation of turbulent diffusion through numerical mass diffusion requires tim
dependent gridding. Diffusivity based upon a time increasing Reynolds number can
otherwise match the observed'/® diffusivity for the TVD algorithm, as discussed in
Section 2.1.2.

Experiments show between three and five generations of bubble merger. The lower bc
comes from counting the decrease in the number of ripples or bubbles in the experime
plates of Read and Youngs. The upper bound five comes from the theory of the most unst
wavelength for these experiments. Over the time period of the experiments, the obse
growth rate is very nearly linear itf. Thus, any transition to a new physical regime has
not had an opportunity to influeneg in this time period. Simulations do not exceed the
duration over which experiments are known to have occurred. Tuis, constant over
the time period of the experiments and any possible transition to a new flow regime t
leads to a change in the valueaf has not occurred. For this reason, any significant tims
dependence fos, or any transition to a new flow regime that causgso decrease in
simulations is in disagreement with the experiment.

2.2. Definition of the Statistical Ensemble

Wavelengths present in initial perturbationThe self-similart? growth rate for the
mixing zone thickness at late time results from the progressive merger of bubbles [22]."
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bubbles individually achieve a terminal velocity due to a balance between buoyancy :
drag, but as bubbles are removed from the edge of the mixing zone and neighboring bub
expand to take their place in a merger process, the size-dependent terminal velocity
increase. It is this continued increase in length scales that allows continued acceleratic

To observe a universal value fap, it is desirable not to insert long wavelengths into
the initial data, and thus to avoid contamination of the bubble merger mechanism with
growth at long wavelengths initially seeded in the initial data. A recommended conventi
is to choose wavelengths (Fourier modes) with wavelengsatisfyingA € [Amin, Amax]
With Amin = Amax/2. Some authors include a further modulation and decrease the amplitt
of the random modes near the edge of the allowed interval.

The modeling of an actual experiment, which will necessarily contain some level
unavoidable low-frequency noise, motivates simulations which do not follow the abo
restrictions on wavelengths present in the initial random interface. In [33], a simple
analysis is given for the influence of long wavelength “noise” as a small perturbation
a high wavelength random surface. This work concludes that the influence is potenti
significant and could increase the experimentally observed valag.dfhis analysis is
based on a simple single mode computation. It would be desirable to repeat this anal
using full scale simulation.

Initial amplitude of perturbation. To avoid introduction of a new length scale into the
problem, we want to choose the initial amplitude to be small, within the limit of accura
of the small amplitude Rayleigh—Taylor theory. This small amplitude theory is then us
for initialization, giving in effect a zero or infinitesimal initial amplitude. Most Eulerian
finite difference schemes have trouble with initialization of small amplitude perturbatior
Unless several zones are included within the initial amplitude of the perturbation, an Eule!
simulation with an untracked interface will have difficulty in observing and responding:
the perturbation at all. This requirement leads to very fine scale zoning per initial wavelen
or to use of large amplitude initial conditions. Front tracking, with its subgrid resolutio!
does not suffer from this problem. See Section 3.

Size of statistical ensemble of initial perturbation3.he statistical ensemble converges
to an infinite volume limit with surprising speed in two-dimensional studies [6]. This isst
has not been explored in three dimensions. The size, i.e., the humber of initial bubb
is more important as a restriction on the duration of the simulation, since two or thr
generations of bubble merger reduce the number of bubbles by factors of 16 or 64,
the number of bubbles at the end of the simulation must still be enough for statisti
significance. The requirement for two or three generations of bubble merger is to ensure
the simulation has entered the self-similar regime and to explore the influence of numer
dissipation effects which could force a transition to a new flow regime, as discussec
Section 2.1.4.

2.3. Data Analysis and Asymptotics

Equation (1) assumes a self-similar flow, assumed to be valid in the large time asympt
limit. There are two problems with using this picture and formula in the analysis of sir
ulation. First, all simulations, including those reported here, are of limited time duratic
Second, the experimental initial conditions are not observed. Neither the statistical ens
ble nor even its variance at an initial time is known. We propose above to initialize, with
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the regime of linear analysis, amplitude wavelength. Any such statistical ensemble of
initial conditions can be propagated backward in time by the linearized Rayleigh—Tay
eqguations to another such ensemble with a still smaller initial amplitude. Thus, neither
initial time nor the initial amplitude is determined by the condition of linearization withir
the linear regime. For this reason, we allow for a negative starting time;-to < 0, and
imagine that the ensemble has already evolved for atjme0 (linearly) before the (non-
linear) simulation starts, with its time beginningtat 0. This being the case, formula (1)
should now read

Zu(t) = (—D*axAg(t + to)*. (19)
The linear theory in an infinite domain gives

Zi(t) = Zx(0) exp(/k Agh), (20)

wherex = 27/, for a wavelength.. Thus, an initial amplitude decrease by a factor of
exp(—to/2m Ag/A) is equivalent to a shift by in the starting time.

This same point has been emphasized in different terms [38], where the point is m
that in a preasymptotic time regime, the scaling law (1) should be replaced by

Zk(t) = (—D*a2kAgt + g/ Agt, (21)

with the two unknown coefficients; x anda,  determined by fitting to the simulation data.

Either of these equivalent points of view introduces a source of ambiguity in the d:
analysis. The second parameter in (19) or (21) will not be well determined by the data gi
here, because the simulation times are not long enough. We measure the duration ¢
simulation by the dimensionless ratio of the penetration distZpde a mean or represen-
tative initial wavelength.. For simulations taken to a penetration of a wavelength ratio ¢
about 33, which corresponds to late time simulation results of Youngs, we find a sensiti
of « to ty of about 10% for O< ty < 4. For the simulations reported here, the sensitivity i
higher. For this reason, the absolute valuesa oéported are regarded as tentative, while
relative values (comparison of twwonTier simulations or comparison &fonTier to TVD
simulations) have a greater assurance.

2.4. Other Factors

Mesh resolution per mode Our simulations use about 10 zones per initial bubble. Man
reported simulations are more coarsely zoned. At these resolutions, the simulations ar
derresolved. Additional studies on the influence of mesh refinement would be desirable.
effect should be to produce a moderate increase in obsegyenh the basis of experience
in two dimensions.

Length of domain. Waves reflecting from the ends of the computational domain ca
decrease the value of, according to two dimensional studies, especially if the domai
boundary is too close to the edge of the mixing zone.

Compressibility. Compressibility has been observed to incragsmoderately in two-
dimensional simulations [6]. We introduce the dimensionless paraivéter 1.g/c3, where
C; is the sound speed in the heavy fluid arid a mean bubble width, measured at the initial
time, to characterize the compressibility of the flow. We correct for the effect of finif
M? > 0in Section 4.1.
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Definition of edge of mixing zoneThe edgeZy of the mixing zone is defined as the
location of the furthest penetrating bubble=£ 1) or spike k = 2), or equivalently the
location of( f) = 0. Herefy is a local volume fraction angif) is a transversely averaged
volume fraction. This definition is inconvenient for untracked Eulerian simulation code
as the mass diffusion extends the locatiorZgfunrealistically under this definition. The
definition has also been criticized as being statistically unstable in the limit of large ensem
size, i.e., of many bubbles. For this reason, many simulations and some experiments re
a definition ofay based on 5% valuesfy) = 0.05. The 5% definition leads to a small
decrease imy,. For convenience of comparison, we report 0, 1, and 5% definitioas. of

The simulations based on shock capturing algorithms presented here use a leve
function to determine locally iw, y, z, t a 50% contour or zero-level surface to represen
the interface. This contour can be used by any of the above methods to define global,
transverse averaged, 0, 1, or 5% contours to determine theZgdafehe mixing zone and
hencewy,. Only the 0% contours are reported for the capturing simulations.

Plainly, these various definitions &}, and«, are not identical. (We observe about a
10% difference resulting from different definitions.) This fact must be kept in mind whe
comparing simulations to one another or to experiment. See Section 4.1.

3. THE FRONT TRACKING ALGORITHM

Front tracking is a numerical method in which selected waves are explicitly represen
in the discrete form of the solution. Examples include shock waves, contact discontinuit
and material interfaces. Other waves, such as leading and trailing edges of rarefaction we
have continuous states but jumps in their first derivatives. Tracked waves are propag
using the appropriate equations of motion for the given model. For example, if the syst
of equations consists of a set of hyperbolic conservation lays, V e f = h, then the
instantaneous velocigof a discontinuity surface satisfies the Rankine—Hugoniot equation
s[u] = [f] e n. Heren is the unit normal to the discontinuity surface. During a time ste|
propagation, the type of a wave and the flow field in a neighborhood of the wave determir
local time integrated velocity for each point on the wave in the direction normal to the wa
front. Wave propagation consists of moving each point a distaftit@ the normal direction
as well as computing the time updated states at the new position. Tracking preserves
mathematical structure of the discontinuous waves by maintaining the discrete jumy
the wave front, thus eliminating numerical diffusion. It also allows the direct inclusion ¢
the appropriate flow equations for the wave front in the numerical solution.

The front tracking algorithm is described, in its 3D version, in recent publicatior
[15, 16, 18]. This algorithm has been developed into a computerf@oddier, seehttp: //
www.ams.sunysb.edu/~shock/FTdoc.FTmain.html. There are two essential ideas to
the front tracking method. The first is the description of a front or interface as a lower
mensional structure, with supporting data structures and its own dynamics derived from
differential equation being solved. The second essential idea is to use (nonlocal) Riem
solvers to define the dynamics of the front, and ghost cell extrapolation to define a fir
difference algorithm to couple the interior cells to the front.

A front tracking code requires a variety of computational tools for its implementation.
geometry package [15, 16, 18, 20, 27] is needed for the description and manipulation of
tracked waves. This package includes data structures describing interface geometry (pc
lines, curves, triangles, surfaces, etc.), constructors and destructors for these objects
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routines for the description of interface topology. The latter operations include the locat
of the nearest point on a tracked interface to a given location and the identification of
connected component containing a given location.

Another important package is a grid generator used to construct a global interpolar
the discrete solution. This interpolant uses the set of state values on a finite difference
together with the bivalued states at the front to interpolate state values at arbitrary locati
An important feature of the interpolant is that it respect discontinuities at the front, i.e.,
interpolations occur between states on opposite sides of a tracked front. An example of
an interpolant is an interface-constrained triangulation using the cell centers of the fi
difference grid together with the surface elements from the fronts.

Additional packages include libraries for handling interactions between tracked wav
finite difference solvers, Riemann problem solution packages, equation of state packa
flow initialization, and printout. Also, a package for the redistribution of front points i
needed to control numerical instabilities produced due to expanding and converging in
face sections.

The construction and redistribution of a three-dimensional interface is described in [
and is similar to Sethian’s Fast Marching Algorithm [40]. According to this algorithm, th
interface is totally determined by its intersections with grid cell edges. Within each cell, t
interface is reconstructed from these edge crossings. The reconstruction is unique e
for instances of interface bifurcation or change of topology. There are only 16 nonisom
phic reconstructions possible within a local grid cell in 3D, and these are composed ¢
elementary connected interface pieces in each cell.

The flow field (Fig. 1) in a front tracking computation is represented on a set of fini
difference cells together with a set of wave front hypersurfaces. In two space dimensi
fronts are sets of piecewise linear curves. Each linear segment is called a bond. States
front are two valued corresponding to the limit of the flow as the front is approached frc
either side. Fronts are oriented hypersurfaces and we speak of the left- and right-hand -
of the front, respectively, and denote the corresponding states by the left or right state.

e Crid State
® Tracked Points (left,right) States

FIG.1. Arepresentation of the grid for a front tracking computation. The solution is represented on the un
of a spatial finite difference grid and a dynamic grid that follows the fronts.
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The applications discussed here are modeled by the Euler equations, which describ
conservation laws of mass, momentum, and total energy for a nonreacting compres:t
fluid. If we let p u, P, e, andg, represent the mass density, fluid velocity vector, pressur
specific internal energy, and body force respectively, then these conservation laws ca
written as the system of partial differential equations

a apu;
op  oPH

=0
at ' ax
apu; 8pUin P
el — = 00 22
ot ax, Tax 9 (22)
ap(3u*+e) N dpuj(3u®+h) .

ot 0%

The system is closed via a thermodynamic equation of state that relates density, pres
and energy, most commonly through a functional relatfog P(p, €).

3.1. Propagation of Front Points

Point propagate [8] is a basic front tracking operation. This operator computes the tir
advanced position and state of the front. The currently implemented algorithm uses Ic
dimensional splitting to decompose the equations of motion into components normal
tangential to the interface. Figure 2a shows the basic stencil of states used to comput
contribution of the normal component of flow. The stas®sandsry denote the left and
right states at the point to be propagated. Stalteendsr; are interpolated at distancés
in the direction normal to the front. The projection of these states onto the line normal
the front is used to compute the interface velocity at the point and a pair of time upda
left and right states at front.

Point propagate uses three basic operations, slope reconstruction to compute appro»
tions to the flow gradients along the normal line, Riemann problem solutions to comp
interactions between states, and the method of characteristics to compute the contribu
of incoming and outgoing waves to the front motion and states.

5 (; b S
N (a) (b) N
AN #

%
. - .
Iracked Curve )
2

Tracked Curve

FIG.2. A schematic showing the stencil of states used in propagating a front point. For simplicity the diagr:
is shown for two space dimensions. (a) The normal propagate stencil; (b) the stencil used in the tangential up
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The reconstruction step is similar to that used in many shock capturing methods [9, 23,
45, 46] with one important exception. The existence and location of a discontinuity :
explicitly known and represented in the reconstructed slopes so that no differencin
performed between states on opposite sides of the front. Otherwise standard limiters, -
as the van Leer limiter, are used to compute the reconstructed slopes, and these slop
used to define a one-dimensional interpolant for state values along the normal line.

Riemann problem solutions are used as predictors of the interface motion. For exam
the solution of the Riemann problem with datg sry defines a set of outgoing waves from
the front. Each tracked wave carries a wave type that identifies it with one of the wa
from the Riemann problem solution and the motion of that corresponding wave gives
predicted position and state at the next time step along the wave normal. This predict
then corrected to account for flow gradients on either side of the wave using the metho
characteristics. A specific example for the case of a material interface is presented bel

When projected onto the normal line at the point to be propagated, the data for pc
propagate can be viewed as a one-dimensional initial value problem with Cauchy data g
by the reconstructed flow variables. We are interested in solving the Cauchy problem
neighborhood of the front point for one time step over the time interval from tigries, +
At. The tracked point position is denotedkyt) and is initially located as shown in Fig. 3a.

The first step in the propagation algorithm is to solve the Riemann problem with d:
defined by the projection of the statglg andsry onto the interface normal. That is, we use
as the left state datao, Po, Uy = Ujp ® N, and right state data.g, Po, Ur = Urg e n. The
midstate velocitym, from the Riemann problem solution is used as a predictor of the conte
velocity so that the predicted motion of the point moves fqitty) to Xc(to) + UnAtn, as
shown in Fig. 3a. We also obtain predicted values for the updated states on either sic
the contact.

-~
(A (5,151, 1,+00) @ a)
’
/
x(1y) !
(g p
/
{” —0 @ O S—>
s/, sl, sly sry sr Sr,
[
£
lyt At b)
—=u,+c ix
d = tl‘ﬂ'f - L‘f?”'
dt
st sb
t, —eo : = o— i
st sl; sly=sl sry=sr sr, ST

FIG. 3. In normal point propagate the flow state is projected onto a line normal to the interface point.
one-dimensional Cauchy problem is solved to compute the updated front position and state.
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From the Riemann problem solution we obtain two sound spesdsandcm,, and a
midstate velocityun, for the states on either side of the contact in the Riemann proble
solution. Using these values to approximate the wave speeds of the incoming characteri
on either side of the contact, we trace the incoming characteristics fromgtinat back
to timetp and interpolate statesf atx;(tp) — cm At, andsbatx.(tg) + cm At at the feet
of the incoming characteristics (Fig. 3b).

The contribution of flow gradients on either side of the front to the front motion an
state is calculated using the method of characteristics. The Euler equations can be wr
in characteristic form:

1
Diu+ —D:P =g,
oC
1
Doe+ PDp= =0, (23)
)
1
Dpu — —DpP = g.
pC
The differential operator®;, Dy, and Dy are defined byDs = 9; + (U + C)dy, Dg =
0t + udy, and Dy = 3 + (U — ¢)dx. If we integrate the characteristic equations on eithe

side of the contact and approximate the resulting integrals using the two point trapezo
rule, we obtain a set of implicit equations:

U+_Uf+}< + ++)(F’+—F’f)=gAt
2\ piGr oG
1 1 1
Ut —up— = —— + )(P*—Pb)z At
° 2<pbcb oo J
P+ 1 1
q+_a+F)|(+_>:o
2 £ Ll (24)
N erJrP++Pr(1 1>_0
= 2 ot o)

Pt =R, ") ¢ =a(g,n")
P* =R, o), ¢ =c(E n).

for the time updated states on the contact. Finally we use central difference in time
compute the net interface normal velocity,

1 +
Vinterface = E(u =+ Um),

Xc(to + At) = Xc(lo) + VinterfaceAl.

3.2. Accuracy of Normal Point Propagate

As an illustration of the accuracy of the method we consider the specific example of
propagation of a shock front from tintgto timety + At for Burger’s equation:

Ut + (%u2>x =0. (25)
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For simplicity we assume th&g = 0 and that the initial shock is located»at= 0 so that
our initial data is given by

ux), x<0
ur(x), 0<x.

u(x, 0) = {

Let s(t) be the shock location at timteand definai_(t) = u(s(t)—, t), uy (t) = u(st)+,

t). The Rankine—Hugoniot relations for Burger's equation imply &@&f = %(u_(t) +

u, (t)), and since solutions to Burger’'s equation are constant along the characteris
dx/dt = u, we haveu_(t) = u;(s(t) — u_(t)t) andu, (t) = u, (s(t) — uy(t)t). Differen-
tiating these relations with respect to time we easily obtain

Us (1) = Uy {8 — Ust — Us sy

U (t) = U {S — Ust — U} + Ul {8 — Ut — 204} 5.0 -

Using the standard notatioa][= a_ — a, anda = %(i + a,), we obtain the derivatives
attimet = 0:

. 1,

uL(0) = j:§Ur|[u]|(o.0)

- 1 " 2 / / 1 /

U+(0) = ZUH[U] Fu(uy = Z[U] [Ullo,0
$(0) = Ul(0,0

1
5(0) = —Z[U/][U]|(o,o>
s(0) = Z{J”[U] + 3u[u}u]l0.0)-

The numerical solution at timat, as computed by the normal propagate algorithm, i
easily shown to be

ul (At) = upy (i%[u(O)]At)
ST(At) = %(u‘(O) + U"(At))At.

Expanding the numerical solution as a Taylor serieAtrand comparing this to the Taylor
series for the exact solution we obtain

n Atz 3
ufl (AD) — us(AD)] = 00— +O(AL)

Uy (Uﬁ + %[U/]> [u]

3
(a0 - @] = [T - ST G+ ot

1
4

from which we conclude that the states at the front are correct to first order and the fr
position is correct to second order. It is interesting to note that the accuracy of the algori
improves as the slopes on either side of the front approach zero with the states becol
second-order accurate in the limit where the first derivatives vanish at the front.
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3.3. Tangential Sweep

Front points are propagated using dimensional splitting. The previous discussion
scribed the operations used to compute the normal component of this dimensional splitt
This operation moves the tracked points to their time updated locations and updates
states on the front in the normal direction. Once points have been processed using the
mal point propagate operator, a second sweep is performed to incorporate tangential
information. This is accomplished by projecting the states on a tracked wave near a p
onto the tangent plane at the point being updated. As shown in Fig. 2 for two space dimr
sions, statesl; andsr; are evaluated by interpolating points at distandasn arclength
along the curve, each taken from its respective side of the curve. The tangential project
of these states are then used as data for a standard finite difference solver that provide
final time updated state at the front point.

Note on three dimensionsNormal point propagate in three space dimensions is e:
sentially the same as described above. For the tangential step a two-dimensional arr
projected onto the tangent plane of the front. The axes of this array are aligned with
axes of principal curvature of the front. These are then used as data for a two-dimensi
finite difference solver.

3.4. Ghost Cell Extrapolation for Interior—Front Coupling

Since its inception (see [19FronTier has used the ghost cell extrapolation algorithm
to provide the coupling between the front and the interior system of states and to upc
irregular cells, those whose regular finite difference stencil overlaps with the front.
mentioned previously, the flow field is represented by the union of a set of front states :
finite difference cell states. We call the finite difference cells interior cells. Time steppil
consists of two parts, update of the front states and position and update of the inte
cell states. The latter process is called the interior sweep. In the current implementa
the finite difference grid is a rectangular lattice. Interior cells are updated using stand
finite differences (shock capturing) that treat the tracked fronts as internal time-depenc
“boundaries.” A main feature of the algorithm is that no differencing is done between ce
located on opposite sides of the front. For efficiency the interior sweep is implemen
as a two-pass process. The first pass ignores the tracked fronts and does a standard
difference update on the cells. A second pass is then performed to correct those cell s
whose domain of dependence overlaps the front. We use the terminology of regular
irregular cells to distinguish cells whose domain of dependence is disjoint from the frc
(regular cells) from those whose domain of dependence intersects the front (irregular ce
Figure 4 shows a schematic representation of a front section where the light cells indic
locations whose domain of dependence intersects the front. For simplicity &2 encil
is assumed so that a cell is influenced by the front if it lies within one cell on any side
the front at timeg ort + At.

Irregular cells are updated by constructing a pseudo-stencil of states taken from
appropriate side of the front. We use a simple algorithm of extrapolation by constant st
to construct this stencil. Some representative examples for a one-dimensional case (
a direct solver are shown in Fig. 5. On the upper left a front point is initially outside tf
domain of dependence of the point being updated but moves within that domain during
time step. A CFL condition is enforced that restricts the point from moving more than o
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FIG. 4. Finite difference cells are divided into two classes: regular cells whose domain of dependenc:
disjoint from the front, and irregular cells whose domain of dependence intersects the front.

cell width during the time step so that this front point does not cross the cell center be
updated. For a direct solver this means that this cell is essentially equivalent to a reg
cell, although implicit solvers would need to treat this cell as irregular. The other thr
cases show situations where the front lies between the cell center being updated and
adjacent cells. In these cases we construct the pseudo-stencil by formally replacing the
occupying the “wrong” side of the front by the state on the tracked front. This replacem
only applies to the stencil used to update the particular irregular cell. This stencil is t
passed to a standard finite difference solver that internally treats the cell as a regular
Note that we do not try to account for the partial grid cells formed by the front. In effe

t+ At 4

t+ At

Stalte

FIG. 5.
cell centers.
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Irregular cells are updated using pseudo-stencils generated by extrapolating front points to ne
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we temporarily move the front to the appropriate cell center for the purposes of the upd;
This avoids CFL problems associated with small grid sizes.

The algorithms discussed here are implementeBramTier. FronTier supports one-,
two-, and three-dimensional flows in compressible gas dynamics, elasto-plastic solids, 1
in porous media, and material deposition and etching. Finite difference methods imy
mented for gas dynamics include the Lax—-Wendroff method [30, 37], the Colella piecew
linear method [9], and a version of the Bell-Colella—Trangenstein method [3]. The code
written in ANSI C and is portable to all standard Unix platforms, including Cray, IBM, HF
Linux (i686 and alpha), SGI IRIX, and Sun. In addition to the features described abo
the code supports dynamic wave interactions such as shock refractions and bubble pine
[15-17, 24-27].

4. NEW SIMULATION RESULTS

All simulations reported here are performed on:a 2 x 4 computational domain with a
112 x 112 x 224 grid. The initial interface is a perturbation of a planaf 0 interface. The
perturbation is defined by a sum of random Fourier modes, with between 10 and 15 Fot
modes per linear dimension in the initial perturbation for EnenTier simulations and
between 5 and 15 for the TVD simulations. This definition yields an initial array of abol
12 x 12 bubbles in the perturbation and corresponds to an average initial bubble widtf
0.166. ForFronTier simulations only, the initial velocities and other state variables are als
perturbed, based on an analytic solution for the small amplitude (linearized) single mc
Rayleigh—Taylor instability equations [14]. The amplitudes and phases are chosen by a
dom number generator with independent normal distributions. The variance determines
overall amplitude of the interface perturbation, which is approximately equal to a multif
0.1 of the average initial bubble width. This amplitude is marginally within the domai
of the linearized Rayleigh—Taylor theory. Larger initial amplitudes are commonly use
meaning that the simulations are started in a nonlinear regime with strong transients. In
amplitudes are often reported in units of the full domain length, making the assessir
of linear vs nonlinear flow initialization difficult. All simulations have an Atwood number
A = 0.5 and, except where the compressibility is varied, an initial compressibility valt
M2 = Ag/cs ~ 0.1.

The three most important properties characterizing a mixing zone are its overall wid
the distribution of mass or volume fraction across its width, and the degree of fine sc
mixing. Here we analyze the simulations from these points of view.

4.1. FronTier with Small Compressibility

We consideM? = 0.22 and 0.11, both small, for the compressibility. The purpose of thi
choice is to allow extrapolation to the incompressible liiif = 0 in the determination
of ap. The determination of uses (19) withty = 4 for the FronTier simulation. The
equivalent decrease in initial amplitude is by a factor of 0.1. Wedgset2 for the TVD
simulations. Extrapolation to the incompressible limit gives a reduction of about 186 in
from the larger of the two (small) values of compressibility, and results in agreement w
the experiment, see Tables | and Il

The late time interface separating heavy and light fluids is shown in Fig. 6. The incre:
in ap With compressibility was reported earlier in 2D simulations [6], with an increase &
up to a factor of 2 foM? = 1.0.
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TABLE Il
Values for a, as Determined byFronTier: Comparison of the Effects
of Three Definitions of

Definitions ofa,

M2 0% 1% 5%
0.22 0.083 0.078 0.070
0.11 0.076 0.074 0.068
0 (Extrap.) 0.069 0.070 0.066

Note.Values ofa;, for compressible flow and extrapolation? = 0.

The 5% contour method for computing gives similar values, and a further reduction
of 5 to 10% foray. The resulting (lower) value afy, for FronTier simulations probably
improves the agreement with experiment. Results are presented in Table Il. Data for
computation of, from the simulation of Fig. 6 is givenin Fig. 7. Due to the uncertainty in the
data analysis originating in the limited duration and penetration depth in these simulatic
the quoted values aiy, are regarded as tentative. Other possible systematic errors in |
simulation, such as grid resolution, were discussed in Section 2.

4.2. TVD with and without Artificial Compression

Here we show the influence of dissipative effects by comparifgoaTier (tracked)
simulation with two TVD (capturing) simulations. We duplicate earlier reported capturir
growth rates for comparable simulation times and ensemble sizes. Of the factor of 2 varia

FIG.6. Early and late time steps in a simulation of the Rayleigh—Taylor instability. The interface between t
two fluids is shown. Heré? = 0.11.
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FIG. 7. Height vsAgt?. Here the solid line is the 0% definition for tifeonTier simulation and the dashed
line comes from the TVD simulation. For tieonTier simulation, the black circles are the 1% definition and the
open circles result from the 5% definition.

in principal simulation values faoky,, about half appears at the simulation times reporte
here. Our results explain this half quantitatively as due to the dissipative effects of ¢
turing algorithms. By comparing TVD téronTier, we infer that diffusion of interfacial

vorticity and density jumps is significant, accounting for a 40% decreagg iand about

half of the total discrepancy with most capturing simulations. By comparing two differe
capturing simulations, one with artificial compression (AC) to limit mass diffusion, w
infer that the major dissipative effect is viscosity. An alternate explanation is that the /
algorithm, being less effective in its nonlinear application, does not sufficiently contr
mass diffusion. For the purpose of this comparison, we keep the compressibility fixec
M? 2 0.1. All inputs and sensitive factors (except as explicitly noted) are the same as th.
for the FronTier simulations, so the differences which result can be attributed to diss
pative effects of the TVD capturing algorithm. The comparable incompressible values
ap and the effect of different definitions of, are shown in Table Il and summarized in
Table 1. The tabulated numerical diffusion length is the local width of the numericall
defined interface, as determined at a middle value tof= 6, out of a total simulation time

of t = 12. Observe that this length is comparable to the size of the bubbles and spike

TABLE IlI
Dependence otx, on Numerical Diffusion and Viscosity

Method Observed numerical diffusion length ap, (0%; compressible)
FronTier 0 cells 0.083
AC 6-7 cells 0.053

TVD 11 cells 0.050
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the flow for the two capturing algorithms. Artificial compression reduces this length |
half.

4.3. Fine Scale vs Chunk Mix
4.3.1. Numerical Mixing Fraction

We introduce the local volume fractidia(x, vy, z, t) as the fraction of fluidk at the space—
time locationx, y, z, t. The numerical mixing fraction is defined [49] by the transverse (an
ensemble) averaged correlation

(f1f2)
(f1)(f2)

Youngs [49] reports mixing fraction® ~ 0.8 for a van Leer advection algorithm, indicat-

ing nearly perfect numerical mixindgronTier, with zero mass diffusion across a tracked
interface, hag = 0. The Dimonte—Schneider experiments, performed with immiscible flL
ids, have a mixing fractiod = 0. Youngs’ experiments used both miscible and immiscible
fluids.

0(z,1) = (26)

4.3.2. The Coherence Correlation Length

This section presents two main results. The first is the observation that turbulent mixi
as described both numerically and experimentally, generates a Markov random field, the
making available a range of powerful analysis tools for its description. The second m
result is the observation that the coherence length, defined by the Markov description, ¢
not satisfy acceleration basétiscaling, and thus marks the introduction of a new lengtt
scale and possible beginning of a new flow regime. See also the turbulence-based an:
of [10]. We start with the observation that the coherence probability, i.e., the probabil
to remain within a single phase while moving on a straight line, satisfies an exponen
fall off with distance. The characteristic lengthfor this decay is called the coherence
length.

The exponential law for the coherence pdf can be seen in simulations (Fig. 8) and ex
iments [11] (Fig. 9). The exponential structure for the pdf is equivalent to a Poisson proc
for phase boundaries encountered for motion along a straight line, and thus to a Mar
property for the binary random field defined by the two phase flow. This fact leads to
elegant mathematical description of various transition probabilities [34].

Table IV lists coherence lengths as extracted from both simulation and experiment.
experimental data is generated from the central half of the mixing zone only. Howev
due to the narrowness of the simulation mixing zone, a larger central region was use
construct the simulation data. We note the important fact that the coherence length doe
scale witht? or the width of the mixing zone, which changes by a factor of 3 between t
two experimental times shown in Table IV and by a factor of 2 for the simulation time
Thus, it must describe a new length scale and the possible beginning of a new flow reg
The coherence pdf should not be confused with the bubble size pdf, which also satisfie
exponential law [2] but obeystd scaling. The experimental and simulation numbers sho
similar trends.
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TABLE IV
Experimental and Simulation Values for the Coherence Length Scale
in a Markov Random Field Description of the Interface Statistics

Experiment Experiment Simulation Simulation
late time early time late time early time
An
Light fluid 24 12 23 22
Heavy fluid 19 19 15 24
Ay
Light fluid 17 10 29 5
Heavy fluid 15 13 6 7

] ]
& =
—light s 0.01 light A
] ----heavy \\\ 1 ___ heavy \\\
0.001 \\\\ \\
1 T T T T |\ .........  MAAAARRAL e T ‘I
0 20 40 60 80 100 0 10 20 30 40
length length

Probability computed on horizontal lines Probability computed on vertical lines

FIG. 8. Exponential rate laws for the probability of an interval of lenptio lie totally within a specified
phase, determined froRronTier simulations reported here. The data are well fit to an exponential lag-&xp)

over two orders of magnitude in probability.
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FIG. 9. Exponential rate laws for the probability of an interval of lenptio lie totally within a specified
phase as determined experimentally [11].
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5. CONCLUSIONS

We have analyzed the mixing growth rate constayih multimode (random) Rayleigh—
Taylor instability in a 3D planar geometry. Despite the large effort made to determine t
quantity, disagreements and inconsistencies have persisted.

We identified two significant factors which are sufficient to obfionTier simulations
that agree with experimental data. The first factor is a correction for compressibility and
second is a correction for differing definitions of the constaptWe also identify a source
of indeterminacy in the data analysis for the growth rate

The numerical dissipation of the capturing algorithms is a significant factor, sufficient
explain part of the spread in simulation values, and probably all of the principal discrepan:
observed up to the simulation times studied here. See Table I. For the simulation times
ensemble sizes explored, humerical viscosity appears to play a larger role than nume
mass diffusion. See Table III.

We have begun an exploration of new physical length scales, which could signal a tr
sition to a new flow regime for Rayleigh—Taylor mixing.

Further studies are needed to resolve remaining issues, including refinement of the r
per mode, increase in the number of modes, and simulations carried to later time.
present paper provides a perspective on, but does not definitively resolve, the cause
the discrepancies concerning the growth wajeFor this reason we list some outstanding
guestions and propose possible research which could help to resolve remaining quest

1. To what extent can long wavelength noise in the experiments contribute to the
perimental value ofy,? How rigid a restriction on the noise spectrum is the observe
growth of Z,(t) scaling linearly int? over the experimental time periods? Experimenta
characterization of initial conditions would contribute to a resolution of this issue.

2. The decreasing, time-dependent simulation values,dir capturing algorithms
signals a new length scale to break thecaling law. We propose here that this length scal
originates in numerical dissipation.

3. The 40% difference reported here between the TVD algorithmFeomiTier, when
run to identical times and with identical resolution, indicates that dissipation is significe
and sufficient to explain the principal discrepancies among simulations up to the simula
times reported here. We propose to RranTier simulations to later time to determine the
value ofay, which results.
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